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Abstract
We study the polaron (soliton) states of a quasiparticle (electron, hole, exciton)
in a quasi-one-dimensional (quasi-1D) model which describes a carbon-type
zigzag nanotube structure. In the Hamiltonian of the system we include the
electron–phonon interaction that arises from the dependence of both the on-
site and the hopping interaction energies on the lattice deformation. We derive,
in the adiabatic approximation, the equations for the self-trapped states of a
quasiparticle in a zigzag nanotube. We show that the ground state of such a
system depends on the strength of the electron–phonon coupling and we find
polaron-type solutions with different symmetries. Namely, at a relatively weak
coupling a quasiparticle is self-trapped in a quasi-1D polaron state which has
an azimuthal symmetry. When the coupling constant exceeds some critical
value, the azimuthal symmetry breaks down and the quasiparticle state can
be described as a two-dimensional small polaron on the nanotube surface. In
the crossover region between the two solutions there is a range of intermediate
couplings, in which the two structures, the quasi-1D polaron and the strongly
localized 2D polaron, coexist as their energies are very close together. We note
that the results of this analytical study are in quantitative agreement with what
has recently been observed numerically.

1. Introduction

Many important physical properties of low-dimensional (LD) molecular systems are due
to the electron–phonon interaction which can lead to the spontaneous breakdown of the
translational symmetry of the system and to the formation of nonlinear states, such as self-
trapped quasiparticles (electrons, holes or excitons), charge density waves, kinks, etc [1–4].
Studies, in one-dimensional (1D) (or quasi-1D) molecular systems, of self-trapped states of
quasiparticles, i.e., of self-consistent states of a quasiparticle, and of the lattice distortion,
have been attracting a great deal of interest for quite a while [4–6]. Various names have been
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introduced for self-trapped electron states, such as polarons, condensons, fluctuons, solitons,
etc. ‘Polaron’ is the most often used. This term was initially introduced by S I Pekar to describe
a self-trapped state formed due to the interaction with the polarizational optical phonons in ion
crystals. Since then, this term has been given a more general meaning and covers a wide
class of self-trapped electron states such as ‘acoustic polarons’, ‘optic Holstein polarons’,
‘piezo-polarons’, etc. It has been shown that there are many real systems, including biological
macromolecules, quasi-1D organic and inorganic compounds, and conducting polymers, in
which self-trapping of quasiparticles takes place. The concept of solitons (1D polarons) has
been used to explain various phenomena, such as charge and energy transports in α-helical
proteins [4], in DNA [7], and in conducting polymers [8, 3, 9–11]. Recently a new class of
1D compounds, carbon [12–15] and boron nitride [16, 17] nanotubes, have been synthesized,
and they have been intensively studied experimentally and theoretically ever since. These
substances have found numerous practical applications, for instance, in miniaturized electronic,
mechanical, electromechanical and optoelectronic devices. The possibility of the formation
of states with a spontaneously broken symmetry in carbon nanotubes has been discussed
in [18, 19]. In particular, large polarons in nanotubes have been considered in [20, 21].
Recently some experimental evidence of the existence of self-trapping in nanotubes has also
been presented [22].

Usually, theoretical studies of such systems are based on a simplified model of an isolated
chain with a single energy band. However, for the proper description of various properties
of such systems one must take into account their complex structure, which is clearly more
complicated than that of a chain with one atom per unit cell. In fact, this can result in the
existence of various types of soliton, leading to the appearance of qualitatively new features,
as, for instance, has been shown for α-helical proteins [23]. This is particularly true in the case
of nanotubes whose properties can range from those of 1D metals to semiconductors depending
on their diameters and chiralities [13, 14, 24, 18, 25]. The nanotubes possess series of energy
bands which are determined by 1D energy dispersion relations dependent on the wavevector
k along the nanotube axis. Thus, it is interesting to study the possibility of self-trapping of a
quasiparticle in a system with the geometry of a carbon nanotube. A numerical study of the
formation and properties of polaron states in zigzag nanotubes, in the semi-empirical tight-
binding model with nearest-neighbours hopping interactions [13], has been reported in [26].
Here, we study this problem analytically and show that a quasiparticle in a zigzag nanotube
can be self-trapped in various polaron-type states which possess different symmetries. We find
that the quasiparticle ground state in such a system depends on the strength of the electron–
phonon coupling. Namely, we show that at a relatively weak coupling polarons possess quasi-
1D properties and have an azimuthal symmetry. When the coupling constant exceeds some
critical value, the azimuthal symmetry is broken and the quasiparticle self-traps into a state of
a small 2D polaron on the surface of the nanotube. There is also the crossover region in which
the two types of polaron coexist and have very close energies.

2. Model of a nanotube

In this section we define the variables used to describe a nanotube. The geometry of a single-
wall carbon nanotube (SWCNT) is based on a deformable 2D hexagonal lattice of a graphene
sheet which is wrapped into a cylinder. The position of any carbon atom of a nanotube at its
equilibrium can be described by the radius-vector

�R0
æ = R(�ex sin�æ + �ey cos�æ)+ �ezzæ, (1)

where the index æ = {æ1,æ2,æ3} labels nanotube lattice sites, R is the radius of the
nanotube, and the coordinates �æ and zæ are the azimuthal angle and the position along the
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Figure 1. The two schemes of index labelling of a hexagonal lattice, and cross section of the
nanotube.

tube, respectively. We consider zigzag nanotubes, as shown in figure 1, which represents the
hexagonal lattice unfolded onto a plane and the horizontal cross section of the nanotube.

To label the sites of the nanotube, one can use two different schemes. The first one,
the most commonly used, is based on the diatomic unit cell of the graphene sheet with
nonorthogonal basic vectors. The corresponding labelling, æ = {i, j, ρ}, involves the indices
i = 0,±1, . . . and j = 0,±1, . . . labelling shifts along the two basic vectors in the
corresponding unrolled honeycomb lattice, and where the index ρ = 1, 2 labels the two types
of atoms in a unit cell (usually called A and B): those who have the nearest neighbour one site
‘down’ (ρ = 1) and those who have it one site ‘up’ (ρ = 2)—see figure 1.

The second scheme is based on the translational vector which is defined to be the
lattice vector of a 1D nanotube and which, together with the chiral vector, determines the
rectangular unit cell for the nanotube [13]. Note that a zigzag hexagonal nanotube possesses
two symmetries: the translation along the axis of the nanotube by the lattice constant (the
modulus of the translational vector) and the rotation by an angle α = 2π/N around the
nanotube axis. Here N is the number of hexagonal cells wrapped around a nanotube. Given
this, one can use a labelling scheme in which the basic unit cell is rectangular and contains four
atoms. For this scheme, also shown in figure 1, we use the labelling æ = {m, n, �}, where
m = 0,±1, . . . is the axial index, n = 1, 2, . . . , N is the azimuthal index and � = 1, 2, 3, 4
enumerates the atoms in the unit cell. The atoms with � = 1, 3 have the nearest neighbour
one site ‘down’, and those who have the nearest neighbour one site ‘up’ are labelled as
� = 2, 4.

To write down the Hamiltonian in a compact form it is convenient to define the formal
index operators of lattice translations, r(æ), l(æ) and d(æ) which, when applied to any lattice
site index æ, translate the index to one of the three nearest sites, æ′. These operators, when
applied to the lattice site which has one nearest neighbour down, translate the index respectively
to the right, left or down from that site. For the lattice sites which have an upper nearest
neighbour, one has to turn the lattice upside down before applying these definitions. Notice
that the square of each of these three operators is equivalent to the identity operator. So, for
example, moving from a lattice site to the right once and then moving to the right again, after
flipping the lattice upside down, one returns to the starting site. In particular, for the second
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lattice labelling scheme, which we will use below, we have

r(m, n, 1) = (m, n, 2), l(m, n, 1) = (m, n − 1, 2), d(m, n, 1) = (m − 1, n, 4),

r(m, n, 2) = (m, n, 1), l(m, n, 2) = (m, n + 1, 1), d(m, n, 2) = (m, n, 3),

r(m, n, 3) = (m, n + 1, 4), l(m, n, 3) = (m, n, 4), d(m, n, 3) = (m, n, 2),

r(m, n, 4) = (m, n − 1, 3), l(m, n, 4) = (m, n, 3), d(m, n, 4) = (m + 1, n, 1).

(2)

Each atom of a carbon nanotube is chemically bound with its three nearest neighbours, and
we can define the lattice vectors �Dæ,δ(æ) = �Rδ(æ) − �Ræ, connecting the atom {æ} with its three
nearest neighbours δ(æ), where δ = r, l, d are the index translation operators defined above.
In what follows, we add the superscript 0 to any quantity when it refers to the equilibrium
positions of the atoms. In a 2D graphene sheet the three vectors �D0

æ,δ(æ) are coplanar. The
valence angles between them are φ0 = 2π/3 and the equilibrium length of the C–C bond is
| �D0

æ,δ(æ)| = d . In a nanotube these three vectors become noncoplanar and the wrapping can
change the valence angles as well as the equilibrium distances between the atoms. It is possible
to show that the wrapping of a graphene sheet into a cylinder does not change the equilibrium
length d and results in only small deviations of the bond angles from their planar values. The
two inequivalent bond angles (the angle between the valence bonds directed along the nanotube
axis and wrapped around the tube circumference, φ1, and the one between the bonds which are
wrapped around the tube circumference, φ2) become slightly smaller than the planar angle,
φ0 = 2π/3. In consequence, the radius of a tube is slightly larger than that resulting from an
ideal rolling of a sheet. These deviations are small ∼ sin2

(
α
4

)
and can be neglected. So the

lattice constant of a 1D periodical nanotube structure, a, and the nanotube radius, R, become

a = 2d(1 +
√

1 − γ 2) ≈ 3d, R = γ d

2 sin
(
α
4

) ≈
√

3d

4 sin
(
α
4

) ,

γ = sin(φ1) ≈
√

3

2
.

(3)

The azimuthal, �æ, and the longitudinal, zæ, coordinates of the equilibrium positions of
the atoms in a zigzag nanotube are determined by the following expressions:

�m,n,1 = nα, �m,n,2 = (n + 1
2 )α, �m,n,3 = (n + 1

2 )α, �m,n,4 = nα,

zm,n,1 = ma − d, zm,n,2 = ma − 1
2 d, zm,n,3 = ma + 1

2 d, zm,n,4 = ma + d.
(4)

The position of the atoms in a nanotube, when they move away from their equilibrium, is
given by the radius-vector �Ræ = �R0

æ + �Uæ, where the local displacement vector, �Uæ, can be
represented through the three orthogonal local vectors [27]:

�Uæ =
3∑

ς=1

uςæ�eς (æ). (5)

Here the unit vector �e1(æ) is normal to the nanotube surface, �e2(æ) is tangential to the
cylindrical surface of the nanotube and perpendicular to the nanotube axis, and �e3(æ) is
tangential to this surface and parallel to the nanotube axis:

�e1(æ) = �ex sin�æ + �ey cos�æ, �e2(æ) = �ex cos�æ − �ey sin�æ, �e3(æ) = �ez. (6)

In the case of small displacements, | �Uδ(æ) − �Uæ| � | �D0
æ,δ(æ)| = d , the distance between

the lattice sites is approximately given by | �Dæ,δ(æ)| ≈ d + Wæ,δ(æ), where

Wæ,δ(æ) = �ræ,δ(æ) · ( �Uδ(æ) − �Uæ), (7)

with �ræ,δ(æ) = �D0
æ,δ(æ)/| �D0

æ,δ(æ)| being the unit vector between these two sites. The explicit
expressions for Wæ,δ(æ) are given in appendix A.
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We can also compute the angle which characterizes the curvature of the deformed lattice,
defined as the solid angle spanned by the three lattice vectors located at a given site:

Sæ = ( �Dæ,l(æ) × �Dæ,r(æ)) · �Dæ,d(æ)

| �Dæ,l(æ)|| �Dæ,r(æ)|| �Dæ,d(æ)|
≈ S0

æ + 1

d
Cæ, (8)

where S0
æ = S0 = (�ræ,l(æ) × �ræ,r(æ)) · �ræ,d(æ) = (3/4) sin(α/2) is the equilibrium value, and

Cæ =
∑

δ

(�ræ,δ(æ) × (�ræ,δ1(æ) × �ræ,δ2(æ)
)) · (�ræ,δ(æ) × ( �Uδ(æ) − �Uæ)) (9)

is the deviation from the equilibrium value due to the site displacements. Here (δ1, δ2, δ) are
cyclic permutations of (l, r, d).

3. Hamiltonian of the system

To study the self-trapped electron states in a nanotube we use the Fröhlich-type Hamiltonian
which, in the case of the zigzag tube structure, reads as

H = He + Hph + Hint =
∑

k,ν,λ

Eλ(k, ν)c
†
k,ν,λck,ν,λ +

∑

q,ντ

h̄ωτ (q, ν)b
†
q,ν,τbq,ν,τ

+ 1√
12L N

∑

k,q,ν,μ,τ,

∑

λ,λ′
Fλ,λ′(k, ν; q, μ|τ )c†

k,ν,λck−q,ν−μ,λ′ Qq,μ,τ , (10)

where k and q are dimensionless wavenumbers (quasi-momenta) along the nanotube which take
values k = 2π

L n1, L � 1 in the range (−π, π]; c†
k,ν,λ (ck,ν,λ) and b†

q,ν,τ (bq,ν,τ ) are creation
(annihilation) operators of an electron in the band Eλ(k, ν) and of a phonon with the frequency
ωτ (q, ν), respectively. Because the unit cell of a tube, as a 1D periodic structure, contains 4N
atoms there are 4N electron bands labelled by two quantum numbers (ν, λ), and 12N phonon
branches, labelled by (μ, τ ). Here ν andμ are azimuthal quantum numbers due to the rotational
symmetry which take N discrete values ν(μ) = 2π

N n2 with n2 = 0,±1, . . . ,± N−1
2 if N is odd

and n2 = 0,±1, . . . ,±( N
2 − 1), N

2 if N is even. Finally, λ = 1, 2, 3, 4 and τ = 1, 2, . . . , 12
due to the existence of four atoms in each cell, as has been mentioned above. The last term
in (10) describes the interaction of electrons with phonons where Fλ,λ′(k, ν; q, μ|τ ) is the
coupling function, and where

Qq,ν,τ =
√

h̄

2ωτ (q, ν)

(
bq,ν,τ + b†

−q,−ν,τ
)
. (11)

The Hamiltonian (10) is written in the quasi-momentum representation and can be
rewritten in the site representation by means of the unitary transformation:

aæ ≡ am,n,� = 1

2
√

L N

∑

k,ν,λ

eikm+iνnv�,λ(k, ν)ck,ν,λ,

1
4

∑

�

v∗
�,λ(k, ν)v�,λ′(k, ν) = δλ,λ′,

(12)

where aæ is the annihilation operator of an electron located on the site æ ≡ (m, n, �). In the
site representation the electron Hamiltonian He in (10) takes the form

He =
∑

æ

(
E0 a†

æaæ −
∑

æ′
Jæ,æ′ a†

æaæ′

)
, (13)

where E0 is the on-site electron energy and Jæ,æ′ is the energy of the hopping interaction
between the sites æ and æ′. Models of carbon nanotubes are normally formulated in a real-
space representation which corresponds to the tight-binding approximation. This relatively
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simple approximation adequately describes electron states in many physical systems, such
as polyacetylene, graphite and carbon nanotubes, as has been successfully demonstrated in
numerous papers (see, e.g., [9, 13, 14] and references therein). The electron band structure of
an SWCNT has been studied theoretically [28, 18, 29, 30, 12] within the nearest-neighbour
hopping approximation. The transformation (12) transforms the electron Hamiltonian H 0

e into
a diagonal form and for a zigzag tube gives 1D electronic bands with the dispersion law [13]

Eλ(k, ν) = E0 ± E±(k, ν), (14)

where

E±(k, ν) = J0

√

1 + 4 cos2
(ν

2

)
± 4 cos

(ν
2

)
cos

(
k

2

)
. (15)

Below we label the quasiparticle bands as

E1(k, ν) = E0 − E+(k, ν), E2(k, ν) = E0 − E−(k, ν),
E3(k, ν) = E0 + E−(k, ν), E4(k, ν) = E0 + E+(k, ν).

(16)

The explicit form of the coefficients v�,λ(k, ν) is given in appendix A.
The electron–phonon interaction originates from different mechanisms [18, 19, 31, 12, 27],

one of which, most frequently considered, is related to the dependence of the hopping
interaction Jæ;δ(æ) (an off-diagonal term in the Hamiltonian He) between the nearest neighbours
on their separation. In the linear approximation with respect to the displacements one has

Jæ;δ(æ) = J0 − J1Wæ,δ(æ). (17)

Generally, the electron–lattice interaction affects both terms of the electron Hamilto-
nian (13) [32–35]. Neighbouring atoms alter the electron energy on each site and the lattice
displacements create an effective potential, called ‘deformational potential’, which is propor-
tional to the local contraction/dilatation. In the linear approximation we can write the on-site
electron energy as

Eæ = E0 + χ1

∑

δ

Wæ,δ(æ) + χ2Cæ, (18)

where χ1 and χ2 take into account the dependence of energy on the interatomic distance and
on the local nanotube curvature, correspondingly; Wæ,δ(æ) and Cæ are given in (7) and (9).

After the transformation (12) and having passed from the lattice displacements to the
phonon variables

uςm,n,� = 1√
12M N L

∑

q,μ,τ

ei(qm+μn)Uς,�;τ (q, μ)Qq,μ,τ , (19)

we obtain the interaction Hamiltonian Hint in (10) with the electron–phonon coupling function
Fλ,λ′(k, ν; q, μ|τ ), which is determined by the interaction parameters χ1, χ2, J1 and by the
coefficients of the unitary transformations (12) and (19). The expression for Fλ,λ′(k, ν; q, μ|τ )
is given in appendix A.

The explicit expressions for coefficients of the transformation (19), as well as for the
phonon frequencies ωτ (q, μ) can be found from the diagonalization requirement of the
potential energy of the lattice displacements (for a review of phonon modes in carbon nanotubes
see, e.g., [13]). In the harmonic approximation the potential energy is

Vlat = 1
2

∑

æ,æ′
( �Uæ′ − �Uæ)K

(æ,æ′)( �Uæ′ − �Uæ), (20)

where K (æ,æ′) is an interatomic-force-constant tensor. Any deformation can be represented as a
sum of a compressive deformation at which the distances between atoms are changed, and of a
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shear strain for which the interatomic distances are unchanged. In the case of a 2D lattice, e.g.,
of a graphene sheet, these deformations correspond to the in-plane displacements. Clearly, the
out-of-plane displacements lead to the deviation of the solid angle spanned by the three lattice
vectors located at a given site from the equilibrium value, (9). Therefore, we also introduce
a constant wc which describes such a deformation. The corresponding three constants, the
compressive modulus w, the modulus of elasticity in a shear w⊥, and wc, guarantee the lattice
stability even in the nearest-neighbour interaction approximation. In this case the summation
in (20) is taken over the nearest neighbours, i.e., æ′ = δ(æ), and the tensor K (æ,æ′) is given by

K (æ,æ′) = w

2
�ræ,δ(æ)�ræ,δ(æ) + w⊥

2
�r⊥

æ,δ(æ)�r⊥
æ,δ(æ) +wcK (æ,æ′)

c . (21)

Here K (æ,æ′)
c is a tensor corresponding to the deformations (9), �r �r is a dyad, and the vector

�r⊥
æ,δ(æ) is a unit vector orthogonal to �ræ,δ(æ) and defined as

�r⊥
æ,δ(æ) = �ræ,δ(æ) × �næ,δ(æ), �næ,δ(æ) = �ex sin

(
�δ(æ) +�æ

2

)
+ �ey cos

(
�δ(æ) +�æ

2

)
,

(22)

where �næ,δ(æ) is a unit vector normal to the nanotube surface and orthogonal to �ræ,δ(æ).
Usually we have w � w⊥ � wc; for instance, in carbon nanotubes w⊥/w ≈ 0.7 [13]. To

reduce the number of the system parameters, we put w⊥ = w. Then, the phonon Hamiltonian
in our model becomes

Hph = 1

2

∑

æ

( �P2
æ

M
+ 1

2
w

∑

δ

(
W 2

æ,δ(æ) +�2
æ,δ(æ)

) +wcC
2
æ

)
, (23)

where �Pæ is the momentum, canonically conjugate to the displacement �Uæ, Wæ,δ(æ) and Cæ are
defined in (7) and (9), and �æ,δ(æ) is defined as

�æ,δ(æ) = �r⊥
æ,r(æ) · ( �Uδ(æ) − �Uæ) (24)

whose explicit form is given in appendix A.
After applying the transformation (19), the diagonalization requirement of the potential

energy of the lattice displacements in (23) becomes

1

12M

∑

�

[
w

2

∑

δ

(
W ∗
�,δ(�)(q, μ, τ )W�,δ(�)(q, μ, τ

′)+�∗
�,δ(�)(q, μ, τ )��,δ(�)(q, μ, τ

′)
)

+ wcC
∗
�(q, μ, τ )C�(q, μ, τ

′)
]

= ω2
τ (q, μ) δτ,τ ′ . (25)

Here Wæ,δ(æ), �æ,δ(æ), and Cæ are the linear forms of the transformation coefficients
Uς,�;τ (q, μ) for Wæ,δ(æ), �æ,δ(æ), and Cæ, respectively.

The equations for the normal modes of lattice vibrations are too complicated, in the general
case, to be solved analytically. For carbon nanotubes the phonon modes were calculated
numerically (see, e.g., [13, 27] and references therein). Here we aim to study the self-trapped
states of an extra electron in such systems. To get the equation for the electron wavefunction in
the adiabatic approximation, we do not calculate the phonon spectrum explicitly; instead, we
use the general relation (25) and the orthonormalization conditions for the coefficients of the
unitary transformation (19).

A neutral carbon nanotube contains 4N L electrons, i.e., it is a half-filled band system
with one electron per atom. The energy dispersion relations (14)–(15), based on the tight-
binding approximation Hamiltonian (13), describe the one-electron band structure of a zigzag
nanotube where the electron–electron interaction is ignored. Such a relatively simple model has
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successfully predicted conducting properties (metallic or semiconducting) of carbon nanotubes
depending on N [13, 14, 24, 18, 25]. Moreover, the Hamiltonian (10) also effectively
describes an extra electron in such a system if the electron–electron correlation is taken into
account. Indeed, some experimental facts indicate that in carbon nanotubes such correlations
are significant. Some theoretical studies within the Hubbard model [36–38] provide some
concrete predictions that are supported experimentally. In particular, (i) in carbon nanotubes
the electron–electron interaction causes superconducting fluctuations [39] as predicted in [37];
(ii) the temperature dependence of the resistance of SWCNTs [40] in a broad interval of
temperature is consistent with the theoretical predictions at ‘a rather large bare Hubbard
interaction, u/t ∼ 10’ (in our notation V0/J0) [38]; (iii) in carbon nanotubes the energy level of
an extra electron (affinity electron) is much higher than that of the nanotube intrinsic electrons,
as follows from the comparison of the ionization energy of carbon atoms, which is 11.26 eV,
and the electron affinity energy, which is 1.27 eV, so the on-site Coulomb repulsion energy can
be estimated as 10 eV, which is significantly bigger than J0. Therefore, such a system can be
effectively described by the Hamiltonian (13). Finally, an extra argument to justify the validity
of our model in describing one extra electron in carbon nanotubes is provided by the exact
solution of the 1D Hubbard model given in appendix B.

4. Self-trapped quasiparticle states

The self-trapped states of a quasiparticle are usually described in the adiabatic approximation
in which the state of the system is represented in the multiplicative Born–Oppenheimer form,

|�〉 = U |ψe〉, (26)

where U is the unitary operator of the coherent atom displacements induced by the presence of
the quasiparticle:

U = exp

[
∑

μ,q,τ

(βτ (q, μ)b
†
q,μ,τ − β∗

τ (q, μ)bq,μ,τ )

]

, (27)

and |ψe〉 is the state-vector of the quasiparticle,

|ψ(0)e 〉 =
∑

λ,ν,k

ψλ(k, ν)c
†
k,ν,λ|0〉 =

∑

æ

ψæa†
æ|0〉. (28)

Here |0〉 is the vacuum state of the quasiparticle and of the phonons; ψλ(k, ν) and ψæ are the
quasiparticle wavefunctions in the momentum and the site representations, respectively. They
are connected by the unitary transformation:

ψæ ≡ ψm,n,� = 1

2
√

L N

∑

λ,ν,k

ei(km+νn)v�,λ(k, ν)ψλ(k, ν) (29)

and satisfy the normalization conditions

〈ψe|ψe〉 =
∑

λ,ν,k

|ψλ(k, ν)|2 =
∑

æ

|ψæ|2 = 1. (30)

In the adiabatic approximation the lattice kinetic energy is considered as a perturbation and
the adiabatic lattice displacements are taken into account by the unitary transformation (27).
The resulting Hamiltonian consists of the two terms, H = H0 + Hna, of which one describes
the adiabatic electron states in the self-consistent lattice potential and the other represents the
residual, nonadiabatic, electron–phonon interaction (see, e.g., [41] and references therein).
Generally speaking, the adiabatic approximation works well at a relatively strong electron–
phonon coupling [41, 23]. To prove its validity explicitly for a particular system, one has to

8
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calculate the higher-order corrections to the total energy of the system and compare them with
the zero-order adiabatic approximation, which will be done in our next study.

The adiabatic approximation is equivalent to the semiclassical consideration in which the
vibrational subsystem is treated as a classical one. Considering 〈�|H |�〉 as the Hamiltonian
functional of the quasiparticle wavefunction and of the lattice variables we obtain a system
of equations which describes the interconnections between the quasiparticle and the phonon
subsystems. The numerical studies of such systems are normally carried out in the site
representation. Here we prefer to use the momentum representation in which the resultant
system of equations reads as

Eψλ(k, ν) = Eλ(k, ν)ψλ(k, ν)

+ 1√
12L N

∑

q,λ′,τ,μ
Fλ,λ′(k, ν; q, μ|τ )Q̄τ (q, μ)ψλ′(k − q, ν − μ), (31)

ω2
τ (q, μ)Q̄τ (q, μ) = − 1√

12L N

∑

k,ν,λ,λ′
F∗
λ,λ′(k, q; ν,μ|τ )ψ∗

λ′(k − q, ν − μ)ψλ(k, ν), (32)

where

Q̄τ (q, μ) = 〈�|Qτ (q, μ)|�〉 =
√

h̄

2ωτ (q, μ)

(
βτ (q, μ)+ β∗

τ (−q,−μ)) . (33)

Substituting (32) into equations (31), we obtain a system of nonlinear equations for the
wavefunctions ψλ(k, ν)

(Eλ(k, ν)− E)ψλ(k, ν) = 1

L N

∑

λ′,λ′
1,λ1,k1,ν1,q,μ

G
λ′

1,λ1

λ,λ′

(
k, k1, q
ν, ν1, μ

)

× ψ∗
λ′

1
(k1 − q, ν1 − μ)ψλ1(k1, ν1)ψλ′(k − q, ν − μ). (34)

Their solution gives the wavefunctions ψλ(k, ν) and the eigenenergy E of the quasiparticle
ground state and, therefore, the self-consistent lattice distortion (32). Here we have introduced
the notation

G
λ′

1,λ1

λ,λ′

(
k, k1, q
ν, ν1, μ

)
= 1

12

∑

τ

Fλ,λ′(k, ν; q, μ|τ )F∗
λ1,λ

′
1
(k1, ν1; q, μ|τ )

ω2
τ (q, μ)

. (35)

We would like to point out here that while in the case of a simple chain with a single
energy band one-quasiparticle self-trapped states are described by a nonlinear equation, in
a complex quasi-1D system with several quasiparticle energy bands, we have a system of
nonlinear equations. All sublevels of all (sub)bands participate in the formation of these self-
trapped electron states and, as a result, there are many solutions of equation (34). System (34)
also admits ‘one-band’ solutions ψλ(k, ν) = ψ(k)δλ,λ0δν,ν0 . Therefore, in the case of such a
‘one-band’ solution, the probability amplitude in the site representation

ψm,n,� = 1

2
√

L N

∑

k

eikm eiν0nv�,λ0(k, ν0)ψ(k) = ψm,n,�;λ0,ν0 (36)

depends on the particular band in which the soliton state is formed. Having the same k-
dependence of the solution ψ(k), the electron distribution can be different for different bands.
Note also that for a ‘one-band’ solution, according to (32), only the azimuthal symmetrical
distortion of the nanotube takes place, i.e., Q̄τ (q, μ) = Q̄τ (q)δμ,0. Therefore, a ‘one-band’
solution describes azimuthally symmetric self-trapped states with a spontaneously broken
translational symmetry. Not all of these ‘one-band’ solutions are stable. For example, nanotube
electronic subbands (16) with ν �= 0 are doubly degenerate and, as a result, the energy levels

9



J. Phys.: Condens. Matter 19 (2007) 306205 L S Brizhik et al

of the two ‘one-band’ self-trapped states with different azimuthal numbers (ν = ν0 and −ν0)
are degenerate. Consequently, according to the Jahn–Teller theorem, these states are unstable
with respect to the lattice distortions which reduce the symmetry and remove the degeneracy
of these states. As shown in [42], the Jahn–Teller effect plays a significant role in the optical
properties of nanosystems.

The most stable state is the state which is split from the lowest energy subband in (16),
namely from E1(k, 0) with λ = 1 and ν = 0. This band is nondegenerate, and its bottom
is sufficiently far from the energy of other bands. We assume that in the site representation a
solution is given by a broad enough wave packet and is formed by the states with small values
of quasi-momentum. Therefore, the states from higher energy bands can be ignored and we
can use the ‘one-band’ approximation and seek a solution in the form ψλ(k, ν) = ψ(k)δλ,1δν,0.
These assumptions allow us to use the long-wave approximation:

E1(k, 0) = E0 − J0

√

5 + 4 cos

(
k

2

)
≈ E1(0)+ 1

12
J0k2,

G1,1
1,1

(
k, k1, q
0, 0, 0

)
≈ G1,1

1,1

(
0, 0, 0
0, 0, 0

)
≡ G0.

(37)

Here

E1(0) = E0 − 3J0 (38)

is the energy bottom of the subband E1(k, 0),

G0 = a2
1

3[(χ1 + J1)
2 + b2

1χ
2
2 + b2(χ1 + J1)χ2]

4w
= p2 3(χ1 + J1)

2

4w
, (39)

where p2 = a2
1[(χ1 + J1)

2 + b2
1χ

2
2 + b2(χ1 + J1)χ2]/(χ1 + J1)

2, a2
1 = w/(w + c2

1wc),
and b2

1, |b2|, c2
1 are constants � 1. To obtain (39), we have used the explicit expressions (35),

the orthonormalization conditions for the coefficients of the unitary transformations and have
assumed that w > wc.

To solve the nonlinear equation for ψ(k) we introduce the function

ϕ0(ζ ) = 1√
L

∑

k

eikxψ(k), (40)

which depends on the continuous variable ζ , which is a dimensionless coordinate along the
nanotube axis related to z by the relation ζ = z/3d . Because of (30), ϕ0(ζ ) satisfies the
normalization condition

∫ L/2

−L/2
|ϕ0(ζ )|2 dζ = 1. (41)

Then, using the long-wave approximation (37), we can transform the equation for ψ(k) into a
differential equation for ϕ(ζ ):

d2ϕ0(ζ )

dζ 2
+ λ0ϕ0(ζ )+ 4g0|ϕ0(ζ )|2ϕ0(ζ ) = 0, (42)

which is the well-known stationary nonlinear Schrödinger equation (NLSE). Here

λ0 = 12(E − E0 + 3J0)

J0
, g0 = 9p2(χ1 + J1)

2

4N J0w
= 9σ

4N
, (43)

where we have introduced the dimensionless electron–phonon coupling constant:

σ = p2(χ1 + J1)
2

J0w
. (44)

10
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A normalized solution of the NLSE is given by the function

ϕ0(ζ ) =
√

g0

2

1

cosh(g0(ζ − ζ0))
(45)

with λ0 = −g2
0. The eigenenergy of this state is

E0 = E1(0)− J0g2
0

12
= E1(0)−

(
3

4

)3
σ 2 J0

N2
. (46)

The probability amplitude (36) of a self-trapped quasiparticle distribution over the
nanotube sites is given by the function

ψm,n,� = 1

2
√

L N

∑

k

eikmv�,1(k, 0)ψ(k). (47)

The explicit expressions for v�,1(k, 0) are given below in (86). In the long-wave approximation
for the phase θ+(k, 0) we find from (87) that θ+(k, 0) ≈ k/12. Then, using the expressions for
v�,1(k, 0) and taking into account the definition (40), we obtain

ψm,n,� = 1

2
√

N
ϕ0(zm,�), (48)

where zm,� describes the atom positions along the nanotube axis (4).
According to our solution (45) the quasiparticle probability distribution over the nanotube

sites is given by the expression

P�,m,n = 1

4N
|ϕ0(zm,�)|2 = g0

8N

1

cosh2
(
g0zm,�/3d

) . (49)

Thus, the quasiparticle is localized along the tube axis in the domain �z = 3πd/g0 =
4πd N/(3σ), and is uniformly distributed over the azimuthal angle of the tube. The sum

∑

n

P�,m,n = P�,m = 1

4
|ϕ0(zm,�)|2 = g0

8

1

cosh2
(
g0zm,�/3d

) (50)

gives the quasiparticle distribution along the tube axis and describes a large quasi-1D polaron.
In this state, as well as in other ‘one-band’ states, according to (32), only the total symmetrical
distortion of the nanotube takes place, i.e., Qτ (q, 0) �= 0 with μ = 0 and Qτ (q, μ) = 0
for μ �= 0. The distortion itself can be calculated explicitly by substituting the obtained
quasiparticle functions into equation (32). The corresponding solution shows that the main
characteristics of this distortion are the radial displacements of atoms as the longitudinal ones
are smaller and the tangential displacements vanish. Using equations (5), (32) and (33) we
obtain the following expression for the radial components of the distortion:

ūr = 〈�|u1
æ|�〉 ≈ −

√
3p(χ1 + J1)g0

16Nw sin α
4 cosh2

(
g0zm,�/3d

) . (51)

The total energy of such a polaron state including the energy of the lattice deformation, W , is

Etot = 〈�|H |�〉 = W + E0 = E1(0)−
(

3

4

)3
σ 2 J0

3N2
. (52)

As we see, our solution in the long-wave approximation is azimuthally symmetric and
describes a large quasi-1D polaron state. The energy of the polaron state, as well as the
extent of the quasiparticle localization along the nanotube axis, depends on the electron–
phonon coupling and on the diameter of the nanotube. It follows from equation (46) that the
energy gap between the adiabatic ground and excited states decreases as the nanotube diameter

11
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increases. At large N this gap is small, nonadiabatic corrections become essential, and strong
hybridization of the ground and the excited states takes place [41]. In this case the adiabatic
approach becomes invalid and the 1D polaron is unstable.

When the electron–phonon coupling increases, the region of localization gets smaller.
Consequently, the wave packet in the quasi-momentum representation becomes broader and
the electron states with higher energies can participate in the formation of the polaron state. At
strong enough coupling the electron states from the upper bands, ν �= 0, can also contribute to
the polaron formation, which then can lead to the breakdown of the azimuthal symmetry of the
solution.

5. Transition to states with broken axial symmetry

To consider the transition from a 1D large polaron state to the one with a broken azimuthal
symmetry, it is necessary to take into account the higher energy bands. For this we perform the
partial transformation of equations (34) into the site representation. In the zigzag nanotubes,
one can identify zigzag chains of 2N carbon atoms, with two atoms per unit cell, which encircle
the nanotube. We can enumerate atoms as ( j, n, ρ), where j enumerates zigzag chains, and
ρ = A, B enumerates atoms in the chain unit cell. Let us enumerate the zigzag ring chains in
such a way that the even chains, j = 2m, consist of atoms (m, n, 1) and (m, n, 2) and the odd
chains j + 1 = 2m + 1 involve atoms (m, n, 3) and (m, n, 4). Then the chains (rings) with odd
number j − 1 = 2(m − 1)+ 1 include the atoms (m − 1, n, 3) and (m − 1, n, 4). The atoms
of the j th chain are equivalent except that the atoms with ρ = A are coupled to the B-atoms of
the ( j − 1)th chain, and those with ρ = B to the A-atom of the ( j + 1)th chain, and these two
sets of atoms are shifted with respect to each other in the opposite directions from the central
line, z j , which is the symmetry line of the chain.

Introducing the functions

φm,�(ν) = 1

2
√

L

∑

λ,k

eikmv�,λ(k, ν)ψλ(k, ν) (53)

and the notation

φm,1(ν) = φ j,A(ν), e−i ν2 φm,2(ν) = φ j,B(ν), φm,4(ν) = φ j+1,B(ν),

e−i ν2 φm,3(ν) = φ j+1,A(ν), φm−1,4(ν) = φ j−1,B(ν), e−i ν2 φm−1,3(ν) = φ j−1,A(ν),
(54)

we can transform equations (34) as follows:

Eφ j,A(ν) = E0φ j,A(ν)− 2J0 cos
(ν

2

)
φ j,B(ν)− J0φ j−1,B(ν)

−3p2χ1

2wN

∑

ν1,μ

[
χ1

(
φ∗

j,A(ν1 − μ)φ j,A(ν1)+ cos
μ

2
φ∗

j,B(ν1 − μ)φ j,B(ν1)
)

+ J1

(
cos

ν1 − μ

2
φ∗

j,B(ν1 − μ)φ j,A(ν1)

+ cos
ν1

2
φ∗

j,A(ν1 − μ)φ j,B(ν1)

)]
φ j,A(ν − μ)

−3p2 J1

2wN

∑

ν1,μ

[
χ1

(
cos

ν − μ

2
φ∗

j,A(ν1 − μ)φ j,A(ν1)

+ cos
ν

2
φ∗

j,B(ν1 − μ)φ j,B(ν1)

)

12
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+ J1

(
cos

ν − ν1

2
φ∗

j,B(ν1 − μ)φ j,A(ν1)

+ cos
ν + ν1 − μ

2
φ∗

j,A(ν1 − μ)φ j,B(ν1)

)]
φ j,B(ν − μ). (55)

Similar equations are obtained for φ j,B(ν) with the replacement φ j,A → φ j,B , φ j,B → φ j,A

and φ j−1,B → φ j+1,A.
In the derivation of these equations we have used the explicit expressions (35) and

the orthonormalization conditions for the coefficients of the unitary transformations of the
quasiparticle and phonon subsystems and we have made the qualitative estimate that wc � w

and χ2
2 � (χ1 + J1)

2, and, therefore, that p ∼ 1 in equation (55).
To find the lowest energy state, we look for a solution of equation (55) in the form

φ j,ρ(ν) = A j,ρφ(ν), (56)

where φ(ν) satisfies the normalization condition
∑

ν

|φ(ν)|2 = 1, (57)

and A j,ρ is the probability amplitude of the quasiparticle distribution on the ρth atom in the j th
zigzag chain:

∑

ν

|φ j,ρ(ν)|2 =
∑

ν

|φm,�(ν)|2 = |A j,ρ|2 ≡ |Am,�|2. (58)

For an azimuthally symmetric solution the only nonzero functions are those with zero
argument: φ(ν) = δν,0. Assuming that A j,ρ = A(ζ j,ρ) is a smooth function of a dimensionless
variable ζ in the units of the lattice constant 3d , we can use the continuum approximation,
taking into account that ζ j,B = ζ j,A + 1

6 , ζ j−1,B = ζ j,A − 1
3 . This transforms equation (55)

into the continuum NLSE (42) for the function ϕ(ζ ), which has been considered above, where,
according to (48), A(ζ j,ρ) = (1/2)ϕ(zm,�). Therefore, for the amplitudes Aρ, j we can use the
solution (45). Let the centre of the localization of the azimuthally symmetric solution, ζ0, in
equation (45) correspond to the central line of the j0th zigzag chain (for simplicity we label it
as j0 = 0). According to (45), we then find that

A0,A = A0,B = A0 =
√

g0

8

1

cosh(g0/12)
,

A1,B(0) = A−1,B(0) = A1 =
√

g0

8

1

cosh(5g0/12)
.

(59)

A1,A(0) = A−1,A(0) = A2 =
√

g0

8

1

cosh(7g0/12)
. (60)

Thus, the inequalities A2/A0 < A1/A0 < 1 hold.
Next, we consider equation (55) for a chain in which the quasiparticle is mainly localized,

i.e., j = 0, and we use the ansatz (56). We assume that the solution is close to being azimuthally
symmetric, i.e., that the function φ(ν) is nonzero only in the vicinity of the zero values of ν.
Then, we can use the long-wave approximation cos (ν/2) ≈ 1 − (1/2)(ν/2)2 in equation (55).
To solve this equation, we introduce a function of the continuum variable x :

ϕ(x) = 1√
2N

∑

ν

ei ν2 xφ(ν), (61)

which is periodic with the period 2N , ϕ(x + 2N) = ϕ(x), and which, due to (57), satisfies the
normalization condition

∫ 2N

0
|ϕ(x)|2 dx = 1. (62)

13
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Note also that the discrete values of x = l, l = 0, 1, 2, . . . 2N − 1, in (61) correspond to the
atom positions in the zigzag ring (the even numbers, l = 2n, correspond to the A-atoms and
the odd ones, l = 2n + 1, to the B-atoms in the chain j = 0).

Using the ansatz (56) and the long-wave approximation, one can transform equation (55)
into a nonlinear differential equation for ϕ(x) (stationary NLSE):

d2ϕ(x)

dx2
+ λ1ϕ(x)+ 2g1|ϕ(x)|2ϕ(x) = 0, (63)

where

λ1 = E − E0 + (2 + η)J0

J0
, g1 = 3A2

0 p2(χ1 + J1)
2

J0w
= 3A2

0σ, η = A1

A0
. (64)

Here σ is the dimensionless electron–phonon coupling constant defined in (44).
Equation (63), which was considered in [43], describes a self-consistent state in a

nanocircle. As it was shown there, a periodic solution of equation (63), satisfying the
normalization condition (62), is given in terms of the elliptic Jacobi functions:

ϕ(x) =
√

g1

2E(k)
dn

[
2K(k)x

2N
, k

]
. (65)

Here K(k) and E(k) are, respectively, the complete elliptic integrals of the first and second
kind [44]. The modulus of the elliptic Jacobi function, k, is determined from the relation

E(k)K(k) = g1 N

2
. (66)

The eigenvalue of the solution (65) is

λ1 = − g2
1

4

(2 − k2)

E2(k)
. (67)

According to [43], relation (66) holds, and so equation (63) admits such solutions only
when g1 exceeds the critical value of the nonlinearity constant: g1 > gcr = π2/(2N).
Therefore, at these values of g1 the azimuthally symmetrical solution is unstable. This
determines the critical value of the electron–phonon coupling constant σ above which the
solutions with the broken azimuthal symmetry first appear. Taking into account (64), (59)
and (43), we obtain the condition for the existence of states with a broken azimuthal symmetry
for the nanotubes of an arbitrary radius:

σ

cosh(3σ/16N)
>

4π

3
√

3
. (68)

From here we find that for nanotubes of large enough radius, N � 6, so that 3σ/16N � 1,
the critical value of the electron–phonon coupling constant (44) does not depend on the
nanotube diameter:

σcr,1 = 4π

3
√

3
≈ 2.42. (69)

Above the values for this transition, the formation of a 2D small polaron on the nanotube
surface is possible. Indeed, we can transform equation (55) to the site representation taking
into account (54):

Eψm,n,1 = E0ψm,n,1 − J0(ψm,n,2 + ψm,n−1,2 + ψm−1,n,4)

− 3a2

4w

[
χ2

1

(|ψm,n,1|2 + |ψm,n,2|2 + |ψm,n−1,2|2
)
ψm,n,1

+ χ1 J1
((
ψ∗

m,n,2 + ψ∗
m,n−1,2

)
ψ2

m,n,1 + 2|ψm,n,1|2
(
ψm,n,2 + ψm,n−1,2

)

+ ψ∗
m,n,1

(
ψ2

m,n,2 + ψ2
m,n−1,2

))

+ J 2
1

((|ψm,n,2|2 + |ψm,n−1,2|2
)
ψm,n,1 + ψ∗

m,n,1

(
ψ2

m,n,2 + ψ2
m,n−1,2

))]
. (70)
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We can consider ψm,n,� = ψ(ym,n,�, zm,n,�) as a function of the coordinates of the
atom positions along the nanotube axis, zm,n,� , and in the perpendicular direction on the
nanotube surface, ym,n,�. Defining y and z as the dimensionless coordinates in units
of d , we get ψ(ym,n,1, zm,n,1) = ψ(y, z), ψ(ym,n,2, zm,n,2) = ψ(y + √

3/2, z + 1/2),
ψ(ym,n−1,2, zm,n−1,2) = ψ(y − √

3/2, z + 1/2), ψ(ym−1,n,4, zm−1,n,4) = ψ(y, z − 1). In
the class of smooth functions we can use the continuum approximation which transforms
equation (70) into the stationary 2D modified NLSE (2D MNLSE) for the function ψm,n,� =
ψ(y, z) that satisfies the normalization condition

∑
m,n,� |ψm,n,�|2 = 1. Taking into account

that a step along the nanotube axis (summation over m) is 3d and a step in the perpendicular
direction (summation over n) is

√
3d , we perform the transition from the summation to the

integration:
∑

m,n,�

|ψm,n,�|2 →
∑

�

1

3
√

3

∫ ∫
|ψ�(y, z)|2 dz dy

= 4

3
√

3

∫ 3L/2

−3L/2
dz

∫ √
3N

0
dy|ψ(y, z)|2 = 1. (71)

From (70) we can obtain the following 2D MNLSE:

λϕ +�ϕ + 2g2
(|ϕ|2 + γ�|ϕ|2)ϕ = 0, (72)

where the function ϕ(y, z) = (2/
√

3
√

3)ψ(y, z) is normalized to one, λ = 4(E − E0 +
3J0)/(3J0) and g2 = 3

√
3σ/2. Equation (72) always admits a delocalized solution while the

localized self-trapped solutions, as was shown in [45] and [46], arise only when the nonlinearity
constant g2 exceeds the critical value g2,cr = 2π . From the definition of g2 we derive the critical
value σcr, which coincides with the one given in (69). The corresponding self-trapped state is
characterized by the localization parameter and the energy

κ = 1

4

√
3
√

3(σ − σcr,1)

πγ
, E2D

tot = 3

4
J0

(

ε0 − 3
√

3(σ − σcr,1)
2

32πγσ

)

, (73)

respectively. To decide which type of solution is actually realized it is necessary to calculate
the total energy of the system. In the continuum approximation with respect to the y and z
coordinates this total energy, after the elimination of the phonon variables, is given by the
expression

Etot = 3

4
J0

∫ 3L/2

−3L/2
dz

∫ √
3N

0
dy

×
(
ε0|ϕ(y, z)|2 +

∣
∣
∣ �∇ϕ(y, z)

∣
∣
∣
2 − g2|ϕ(y, z)|4 − γ g2

( �∇|ϕ(y, z)|2
)2

)
, (74)

where ε0 = 4(E0 − 3J0)/(3J0).
Note that equation (72) possesses an azimuthally homogeneous solution of the form

ϕ(y, z) = 1
√√

3N
ϕ(z). (75)

Note also that after the rescaling which preserves the normalization condition, equation (72)
again reduces to equation (42), which has been obtained in the approximation of one energy
band and which possesses the solution (45). Substituting this solution into equation (74), we
find the corresponding energy:

E1D
tot = 3

4 J0 (ε0 − ε1) , ε1 = 3σ 2

16N2
, (76)

which coincides with the energy of the azimuthally symmetric solution given by equations (52).
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On the other hand, seeking a solution of the form

ϕ(y, z) = ϕ0(z)ϕ1(y), (77)

where ϕ0(z) is given by (45) for a fixed value of z = z0, we obtain from equation (72)

the equation for ϕ1(y). The latter, after the rescaling y = √
3x/2, ϕ1(y) =

√
2/

√
3ϕ(x),

reduces to equation (63), which describes a separate zigzag chain in which the probability of a
quasiparticle localization is maximal. The total energy of the system for the ansatz (77), (45),
used as a trial function, is given by

Etot = 3

4
J0

∫ √
3N

0
dy

(

(ε0 + ε1)|ϕ(y)|2 +
∣
∣
∣
∣
dϕ(y)

dy

∣
∣
∣
∣

2

− geff|ϕ(y)|4
)

, (78)

where

geff = 3
√

3σ 2

8N
. (79)

Note that we have written the energy expression (78), neglecting the term proportional to γ ,
since this term, in the 1D case, provides only a small correction, while its role in the 2D case is
much more important since there it prevents the collapse of the self-trapped states.

The minimum energy condition for the functional (78) leads to an equation that coincides
with equation (63) with the nonlinearity coefficient geff appearing instead of g1. This equation

always admits a homogenous solution ϕ(x) = const = 1/
√√

3N which corresponds to the
eigenvalue and the total energy coinciding with the corresponding values of the azimuthally
symmetric solution (given by equations (46) and (52)). As we have mentioned above, a solution
with the broken azimuthal symmetry first arises when geff exceeds some critical value, namely,
geff > geff,cr = π2/(

√
3N), which, therefore, gives the critical value of the coupling parameter

σ :

σcr,2 = 2
√

2π

3
= 2.96. (80)

The total energy of the system in this state is given by the expression

E2D
tot = 3

4
J0

(

ε0 −
(

3

4

)3
σ 2

π2 N2

(
σ 2 − 4π2

9

))

. (81)

This energy, above the critical value σcr,2, is lower than the energy of the 1D polaron (76).

6. Conclusion

Our analysis, performed in the adiabatic approximation, has shown that the self-trapping of
quasiparticles can take place in a zigzag nanotube. We have shown that the corresponding
system of equations admits several types of solution which possess different symmetries, and
that the stability of these solutions depends on the strength of the electron–phonon coupling.
Namely, as the coupling constant σ increases up to the lower critical value σcr,1 at σ < σcr,1, the
quasiparticle becomes self-trapped in a quasi-1D polaron state. When σ increases further, i.e.,
at the intermediate values σcr,1 < σ < σcr,2, the quasiparticle can be self-trapped in either a 2D
azimuthally symmetrical polaron state or a 1D polaron state with a broken azimuthal symmetry.
Finally, at σ > σcr,2, it becomes an azimuthally nonsymmetrical small 2D polaron.

In general, our analytical results agree qualitatively and quantitatively with the numerical
studies reported in [26]. These are summarized in figure 2 in the form of the phase diagram
of the ground electron states in a zigzag nanotube depending on the dimensionless electron–
phonon coupling, σ0, and nanotube diameter, N . Here the solid lines correspond to the
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Figure 2. Domains of solutions, as a function of N , obtained in the numerical (χ2/
√

J0w = 0.2)
and analytical studies. Above the top line (analytical) or circles (numerical): self-trapped 2D small
polaron states. Below the bottom line (crosses): large polaron. Between the two regions, the
crossover regime in which the two types of states coexist.

(This figure is in colour only in the electronic version)

analytical results, and the crosses and circles represent the numerical data. This diagram shows
three regions of self-trapped electron states. In the region above the upper solid line an extra
electron is self-trapped in a 2D small polaron state, below the lower solid line quasi-1D large
polarons are formed, while in the region between these two solid lines the two types of state
coexist. The corresponding three areas obtained numerically in [26] are separated by circles and
crosses. The numerical results have been calculated for the coupling constant χ2/

√
J0w = 0.2

and wc/w = 0.2; the analytical curves correspond to p = 0.9 (see equation (39)). Thus, our
approximation p ≈ 1, made above, is valid. The comparison of these results with what was
seen in the numerical modelling justifies our analytical studies.

As we have shown in section 3, the Hamiltonian (10) effectively describes one extra
electron in a half-filled band system with one electron per atom. Therefore, our model
qualitatively describes self-trapped states of one or a few doped electrons in carbon nanotubes.
Next, we have to estimate if the coupling constants for carbon nanotubes are below or above
the corresponding critical values. The numerical value of the coupling constant σ0,

σ0 = (χ1 + J1)
2

J0w
, (82)

can be estimated using the value for the radial force constant w = 36.50 × 104 dyn cm−1 =
365 N m−1 (see [13]). A theoretical estimate of the hopping parameter |J0| = 2.5 eV was
obtained for 2D graphene which agrees with the experimental value |J0| = 2.7 eV calculated
to fit the scanning tunnelling microscopy (STM) density of states data [13, 47]. The parameter
of electron–phonon interaction can be written as J1 = q0 J0 (see [12]), where the coefficient
q0 = 2.5 Å

−1
was calculated in [48]. Unfortunately, little is known about the constant χ1.

At χ1 �= 0 the value of σ0 can be either larger or smaller than the corresponding value at
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χ1 = 0, σ0(χ1 = 0) ≈ 0.6–0.7, depending on the sign of χ1. Nevertheless, in view of the
significant difference between σ0 and σcr,1 = 2.4 we expect that, at low doping, extra electrons
in carbon nanotubes are self-trapped in quasi-1D large polaron states. A detailed study of
the electron–phonon interaction, using femtosecond time-resolved photoemission, has been
performed in [49] by measuring the nonequilibrium electron dynamics after rapid heating of the
system with a femtosecond laser pulse. This study has given the measured value of q0 ≈ 1 Å

−1

which is considerably smaller than those derived in [48], i.e., a 50% discrepancy between the
experimental and theoretical values. The same magnitude of the discrepancy for the values of
the electron–phonon matrix elements has been obtained from the optical measurements [50]
(11 meV) and ab initio calculations [51] (28 meV). Note, however, that in the long-wave limit
from (88) we find that the electron–phonon matrix element Fλ,λ′(k, ν; q, μ|τ ) is proportional
to the sum χ1 + J1, and, therefore, assuming that χ1 and J1 have opposite sign and setting
χ1 ≈ −J1/2, the discrepancy between the experimental and theoretical values can be removed.
For the experimental value of q0 ≈ 1Å

−1
we obtain σ0 ≈ 0.15. Therefore, the quasi-1D large

polaron is rather broad. As we have discussed above, such a polaron is stable in nanotubes of
not too large diameters.

One can expect the manifestation of self-trapped polaron states in nanotubes to occur in
their optical and transport properties. If the adiabatic approximation is valid, the scattering
of solitons (large polarons) is determined by the residual electron–phonon interaction which
can be regarded as a perturbation. In this case the scattering probability is small and,
therefore, the dynamical properties of solitons provide a high mobility of the injected charge
carriers leading to a ballistic transport. The residual scattering of solitons on phonons is
important for a more accurate description of the transport and of the optical properties of the
systems [41].
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Appendix A. Lattice distortions and electron–phonon coupling functions

The deviations from the equilibrium values due to the lattice displacements Wæ,δ(æ) = �ræ,δ(æ) ·
( �Uδ(æ) − �Uæ) are given by

Wæ;r(æ) =
√

3

2
sin

(α
4

)
(u1

r(æ) + u1
æ)− (−1)�

√
3

2
cos

(α
4

)
(u2

r(æ) − u2
æ)

− (−1)�

2
(u3

r(æ) − u3
æ),

Wæ;l(æ) =
√

3

2
sin

(α
4

)
(u1

l(æ) + u1
æ)+ (−1)�

√
3

2
cos

(α
4

)
(u2

l(æ) − u2
æ)

− (−1)�

2
(u3

l(æ) − u3
æ),

Wæ;d(æ) = (−1)�(u3
d(æ) − u3

æ).

(83)

For the deviation of the solid angle spanned by the three lattice vectors, located at a given
site, from the equilibrium value due to site displacements, we have
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Cæ =
√

3

2

[
3 cos3

(α
4

)
u1

æ − cos
(α

4

)
u1

d(æ) − cos
(α

4

)(
5

2
cos2

(α
4

)
− 3

2

)
(u1

l(æ) + u1
r(æ))

+ (−1)� sin
(α

4

) (
3

2
− 5

2
sin2

(α
4

))
(u2

l(æ) − u2
r(æ))

+ (−1)�
√

3

4
sin

(α
2

)
(u3

l(æ) + u3
r(æ) − 2u3

æ)

]
. (84)

The shift deformation, due to the site displacements, defined as�æ;r(æ) = �r⊥
æ,δ(æ) · ( �Uδ(æ)−

�Uæ), is given by

�æ;r(æ) = −
[

1

2
sin

(α
4

) (
u1

r(æ) + u1
æ

) − (−1)�

2
cos

(α
4

) (
u2

r(æ) − u2
æ

)

+ (−1)�
√

3

2

(
u3

r(æ) − u3
æ

)
]
,

�æ;l(æ) = 1

2
sin

(α
4

) (
u1

l(æ) + u1
æ

) + (−1)�

2
cos

(α
4

) (
u2

l(æ) − u2
æ

) + (−1)�
√

3

2

(
u3

l(æ) − u3
æ

)
,

�æ;d(æ) = −(−1)�(u2
d(æ) − u2

æ).

(85)

The matrix of the unitary transformation coefficients ‖v�,λ(k, ν)‖, defined in (12), is given
by

‖v�,λ(k, ν)‖ =

∥
∥
∥∥
∥
∥
∥

e−i( k+ν
4 +θ (0)+ ) e−i( k+ν

4 −θ (0)− ) e−i( k+ν
4 −θ (0)− ) e−i( k+ν

4 +θ (0)+ )

e−i( k−ν
4 −θ (0)+ ) e−i( k−ν

4 +θ (0)− ) −e−i( k−ν
4 +θ (0)− ) −e−i( k−ν

4 −θ (0)+ )

ei( k+ν
4 −θ (0)+ ) −ei( k+ν

4 +θ (0)− ) −ei( k+ν
4 +θ (0)− ) ei( k+ν

4 −θ (0)+ )

ei( k−ν
4 +θ (0)+ ) −ei( k−ν

4 −θ (0)− ) ei( k−ν
4 −θ (0)− ) −ei( k−ν

4 +θ (0)+ )

∥
∥
∥∥
∥
∥
∥
, (86)

where the phases θ(0)± = θ
(0)
± (k, ν) are determined from the relations

tan 2θ(0)± (k, ν) = sin k
2

2 cos ν2 ± cos k
2

. (87)

Finally, the function of the electron–phonon coupling, introduced in (10), is given by the
expression

Fλ,λ′(k, ν; q, μ|τ ) = 1

4
√

M

∑

�

[
χ1

∑

δ

W�,δ(q, μ, τ )+ χ2C�,τ (q, μ)
]

× v∗
�,λ(k, ν)v�,λ′ (k − q, ν − μ)

+ J1

4
√

M

[(
W1,r (q, μ, τ )+ e−i(ν−μ)W1,l(q, μ, τ )

)

× v∗
1,λ(k, ν)v2,λ′(k − q, ν − μ)

+
(

W2,r (q, μ, τ )+ ei(ν−μ)W2,l(q, μ, τ )
)
v∗

2,λ(k, ν)v1,λ′(k − q, ν − μ)

+ e−i(k−q)W1,d(q, μ, τ )v
∗
1,λ(k, ν)v4,λ′(k − q, ν − μ)

+ ei(k−q)W4,d(q, μ, τ )v
∗
4,λ(k, ν)v1,λ′(k − q, ν − μ)

+ W2,d(q, μ, τ )v
∗
2,λ(k, ν)v3,λ′(k − q, ν − μ)

+ W3,d(q, μ, τ )v
∗
3,λ(k, ν)v2,λ′(k − q, ν − μ)

+
(

ei(ν−μ)W3,r (q, μ, τ )+ W3,l(q, μ, τ )
)
v∗

3,λ(k, ν)v4,λ′(k − q, ν − μ)

+
(

e−i(ν−μ)W4,r (q, μ, τ )+ W4,l(q, μ, τ )
)
v∗

4,λ(k, ν)v3,λ′(k − q, ν − μ)
]
.

(88)
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Appendix B. The Hubbard model

The Hubbard model [52] is one of the few realistic models which takes into consideration
the electron correlation in a discrete lattice and which is hopefully amenable to mathematical
treatment [52–55]. The 1D model with the short-range electron–electron interaction in the one-
band approximation has been solved exactly and completely by means of the Bethe functions
(the Bethe ansatz) [53]. The Hubbard Hamiltonian, HH = H0 + He−e, involves the electron
hopping between neighbouring lattice sites

H0 =
∑

n,σ

[
E0 a†

n,σan,σ − J0

(
a†

n,σan+1,σ + a†
n+1,σan,σ

)]
, (89)

and the Coulomb repulsion between electrons at each site which is capable of accommodating
two electrons of opposite spins,

He−e = 1
2 V0

∑

n,σ

nn,σnn,σ̄ . (90)

Here J0 is the energy of the electron hopping interaction between sites, V0 > 0 is the on-site
energy of the electron–electron Coulomb repulsion, nn,σ = a†

n,σan,σ , and σ̄ = −σ . In (89),
E0 is the energy of a bound electron level on a site E0 = −E0, counting the energy from the
continuum states of free electrons. The Hamiltonian preserves the total number of electrons
Ne = ∑

n,σ a†
n,σan,σ and the total spin S = ∑

n,σ σa†
n,σan,σ .

Next we consider exact solutions of the Schrödinger equation

HH|�〉 = E |�〉 (91)

for the 1D Hubbard model using the η-pairing approach developed by Yang [54]. Note that this
approach goes beyond the 1D case. It is applicable to 2D and 3D lattices and can be generalized
to the carbon nanotube geometry. Here we consider, for simplicity, the 1D case. As is shown
in [54], many eigenstates of equation (91) can be explicitly written down with the aid of an
operator η defined as

η =
∑

n

e−iπnan,σan,σ̄ . (92)

The state

|�M〉 = AM
(
η†)M |0〉, (93)

with AM being a normalization factor, is an eigenstate of the Hamiltonian HH with the
eigenvalue

EM = M (2E0 + V0) . (94)

The state (93) is one of many possible electron states, but not the ground state, with S = 0 in a
lattice with Ne = 2M electrons. In the case of a half-filled band M = N/2 (N , assumed to be
even, is the number of lattice sites in the main region).

Using the η-operator, we can also construct the state

|�e〉 =
∑

n

ψna†
n,σ

(
η†)N/2 |0〉, (95)

which corresponds to an extra electron in a half-filled-band lattice. One can easily verify
that such states are eigenstates of equation (91) provided that ψn = B exp (ikn) (B is a
normalization factor). The corresponding energies of these states are

Ee = Ee(k) = (N + 1)E0 + N

2
V0 − 2J0 cos k, (96)
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where k = 2πν/N , ν = 0,±1, . . . ,±((N/2) − 1), N/2. Here we assume that the chain is
long enough, N � 1, and apply periodic boundary conditions. Therefore, an extra electron in
a half-filled-band lattice can be effectively described by H0, which gives the same dispersion
law as (96).
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